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Turbulent mixing plays a major role in enabling the large-scale ocean circulation. The
accuracy of mixing rates estimated from observations depends on our understanding
of basic fluid mechanical processes underlying the nature of turbulence in a stratified
fluid. Several of the key assumptions made in conventional mixing parameterizations
have been increasingly scrutinized in recent years, primarily on the basis of adequately
high resolution numerical simulations. We add to this evidence by compiling results
from a suite of numerical simulations of the turbulence generated through stratified
shear instability processes. We study the inherently intermittent and time-dependent
nature of wave-induced turbulent life cycles and more specifically the tight coupling
between inherently anisotropic scales upon which small-scale isotropic turbulence
grows. The anisotropic scales stir and stretch fluid filaments enhancing irreversible
diffusive mixing at smaller scales. We show that the characteristics of turbulent mixing
depend on the relative time evolution of the Ozmidov length scale LO compared to
the so-called Thorpe overturning scale LT which represents the scale containing
available potential energy upon which turbulence feeds and grows. We find that when
LT ∼ LO, the mixing is most active and efficient since stirring by the largest overturns
becomes ‘optimal’ in the sense that it is not suppressed by ambient stratification.
We argue that the high mixing efficiency associated with this phase, along with
observations of LO/LT ∼ 1 in oceanic turbulent patches, together point to the potential
for systematically underestimating mixing in the ocean if the role of overturns is
neglected. This neglect, arising through the assumption of a clear separation of scales
between the background mean flow and small-scale quasi-isotropic turbulence, leads to
the exclusion of an highly efficient mixing phase from conventional parameterizations
of the vertical transport of density. Such an exclusion may well be significant if the
mechanism of shear-induced turbulence is assumed to be representative of at least
some turbulent events in the ocean. While our results are based upon simulations of
shear instability, we show that they are potentially more generic by making direct
comparisons with LT − LO data from ocean and lake observations which represent a
much wider range of turbulence-inducing physical processes.

† Email address for correspondence: ali_mash@mit.edu
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1. Introduction

Diapycnal turbulent mixing plays a primary role in enabling the large-scale ocean
circulation (Wunsch & Ferrari 2004). Over the past several decades, significant
investment has been made in estimating the strength of diapycnal mixing on the
basis of observations of ocean turbulence (see e.g. St. Laurent & Simmons 2006;
Waterhouse et al. 2014, for reviews). Four common assumptions concerning density
stratified turbulence, made for practical purposes in conventional methods employed
for the estimation of mixing from observations, are that the turbulence is (I) fully
developed, (II) stationary, (III) and isotropic and that (IV) there exists a clear
separation of scales between the background mean flow and the superposed isotropic
turbulence. In recent years, numerical simulations have become just powerful enough
to aid in quantification of inaccuracies associated with these assumptions (Ivey,
Winters & Koseff 2008; Pham & Sarkar 2010; Mashayek, Caulfield & Peltier 2013;
Mashayek & Peltier 2013; Salehipour & Peltier 2015; Salehipour, Peltier & Mashayek
2015; Salehipour, Caulfield & Peltier 2016a).

A common hypothesis is that shear-driven mixing in the ocean is at least partially
induced by the breaking of internal waves excited by tides and geostrophic motions
in the deep ocean or by winds at the surface (Alford & Pinkel 2000; Garrett 2003;
Nikurashin & Ferrari 2011). Such mixing comprises many individual breaking events
each of which is non-stationary in time. It is at least plausible that some of these
breaking events may be considered to be generated by shear instabilities on scales
small compared to the internal waves. Such shear instability generated mixing may
be characterized by a multi-stage life cycle. A preparatory period of growth of the
internal wave amplitude leads to an initial period of shear instability growth, then
break down through secondary instabilities triggering a transition to turbulence. This
initial period is followed by an intermediate period of what might be considered to
be fully developed turbulence, followed ultimately by a final decay period. Contrary
to common assumptions in parameterization schemes (Mashayek & Peltier 2013), in
this scenario of shear instability generated mixing the contribution of the intermediate
‘fully developed’ period does not necessarily dominate the net vertical cross-density
flux of mass and tracers, even at very high flow Reynolds numbers. Furthermore, even
in the most turbulent intermediate period, turbulence can be highly non-stationary and
anisotropic comprising a range of scales between that of small-scale quasi-isotropic
turbulence and that of the background mean flow, particularly when there is a
dominant shear direction imposed by some ‘external process’, for example through
the intensification of an appreciably larger-scale internal wave (Fritts et al. 2003; Ivey
et al. 2008; Mashayek & Peltier 2013; Mashayek et al. 2013). Figure 1, produced
from results of a numerical simulation to be discussed in detail later, illustrates
the cascade of instabilities which form upon a shear instability overturn and which
eventually destroy billow coherence. As we will discuss in the paper, this anisotropic
highly time-dependent turbulence transition phase of flow makes a major contribution
to the net vertical mixing of mass over the entire life cycle of this type of turbulence.

Recently, Mashayek & Peltier (2013) (hereafter MP13) and Mashayek et al.
(2013) (hereafter MCP13) presented computation-based evidence for break down of
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524 A. Mashayek, C. P. Caulfield and W. R. Peltier

FIGURE 1. Snapshot of turbulence break down and mixing due to breaking of an
overturning by shear instability in a stably stratified layer (case 12 in table 1). Purple and
blue represent light and heavy density iso-surfaces, respectively. The snapshot corresponds
to time t= 80h/1u, where h is half the initial shear layer depth and 1u is half the total
velocity difference.

assumptions I–III when the turbulence is triggered by a initial shear instability. In two
important papers (Smyth & Moum 2000a,b), Smyth and Moum effectively addressed
assumptions III and IV (though they did not couch the discussion in precisely those
terms). Crucially, their simulations were at significantly lower Reynolds number than
is now achievable, and thus in particular the shear instabilities they simulated were
not prone to the full ‘zoo’ of secondary instabilities identified in Mashayek & Peltier
(2012a,b), and so their subsequent analysis of the turbulence properties is inevitably
affected by the absence of physical processes present in geophysically relevant higher
Reynolds number flows. In this study, we build on the work of Smyth & Moum
(2000a) (hereafter SM00) to focus on assumption IV, analysing data from a more
complete set of numerical simulations at substantially higher Reynolds number closer
to values representative of energetic ocean mixing zones. In particular we will extend
their analysis of scales of turbulence. Through this analysis, we demonstrate that
assumption IV may at best hold in only a rather narrow part of the life cycle for
rather special shear instabilities, implying that extending a model based fundamentally
on this assumption over the whole turbulence life cycle may well introduce large
uncertainty and/or inaccuracy in estimates of net turbulent mixing over the life cycle
of an individual wave breaking event, if that wave breaking is generated by the
onset of shear instabilities. Wave-induced turbulence in energetic oceanic regions is
determined by the combination of many individual breaking events, both essentially
isolated in space and time and yet dynamically coupled in some way. Therefore, there
is no a priori basis upon which it can be assumed that the inaccuracies we discuss
in this work will have negligible effect in the much more complex real ocean. Of
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course, it is always important to remember that our results are based on modelling
individual wave breaking events in the highly idealized configuration that the vertical
shear and density distribution induced by the intensification of the internal waves
may be taken to be at least quasi-steady on the time scale of the development of
shear instabilities on those distributions.

There has been an increasing recent interest in description of shear-induced density
stratified turbulent mixing in terms of key physical length scales (see e.g. Mater,
Schaad & Venayagamoorthy 2013; Scotti 2015), and we will focus herein on the
critical importance of the time dependence of characteristic length scales for mixing
in a stratified shear flow. Understanding the relative time dependence of length scales
within the flow is of general interest, as estimates of diapycnal mixing are often
constructed from instantaneous measurements of specific length scales (see Thorpe
2005, for an overview).

Employing shear instability as a canonical mixing agent, our focus will be upon
the lasting effect of the primary ‘overturning’ associated with the primary shear
instability which leads to ‘efficient’ (in a way we define precisely in § 6) irreversible
mixing. An important implication of our analyses is that mixing efficiencies may be
under-estimated in regions of the ocean in which large overturns are expected since
they provide a significant reservoir of energy upon which a broad inertial subrange
of turbulence may draw so as to support efficient irreversible mixing. The most or
‘optimal’ efficient mixing will be shown to occur at the instant during flow evolution
when the scale at which energy is injected, through overturning into the turbulence
cascade at the upper bound of the inertial subrange becomes sufficiently small to
avoid suppression by the ambient stratification. This core idea (as we discuss further
below) is consistent with the arguments presented by Ivey & Imberger (1991), though
for our flows, the associated value of the mixing efficiency in this ‘optimal’ situation
is found to be higher. Of course it will remain an important issue as to whether the
specific model of shear instability generated turbulence that we will employ as basis
for our analyses, relying upon the classical Kelvin–Helmholtz instability (KHI), may
be considered sufficiently representative of spatio-temporally intermittent, relatively
large-scale wave breaking processes in general to enable our results to stand without
caveat. For example, one key issue is the role of ambient, larger-scale background
stratification in the development and break down of shear instabilities. There does
exist evidence, however, in support of the relevance of KHI-based analysis for the
understanding of stratified turbulence in general (Smyth, Moum & Caldwell 2001;
Bouffard & Boegman 2013; Scotti 2015). We will provide some of the evidence
of the generality of the utility of this model of stratified turbulent processes by
comparing results from direct numerical simulations with observations.

This paper is organized as follows. In § 2 we briefly describe the suite of turbulence
simulations upon which our analyses will be based. Section 3 will provide definitions
of the important length scales that may be employed to characterize shear-driven
stratified mixing events. Section 4 presents a detailed discussion of the time
dependence of the evolution of these scales, focusing especially on what may be
considered their generic behaviour in stratified shear-driven mixing at sufficiently
high Reynolds number. In § 5 we discuss the importance of the relative evolution of
the Ozmidov and Thorpe length scales for quantification of the age of turbulence.
In § 6 we briefly discuss the implications of our results and in particular discuss in
§ 5 the quantitative representation of mixing in geophysically relevant circumstances.
Conclusions are offered in the final § 7.
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2. Primary shear instability
In this section we discuss the numerical datasets that will be employed to study

turbulence transition of primary shear instabilities as well as the bulk dimensionless
parameters which characterize them.

2.1. Numerical simulations
We employ a suite of high resolution direct numerical simulations (DNS) of the
turbulence life cycle of finite-amplitude Kelvin–Helmholtz instability (KHI) billows
in stratified shear layers, a common mechanism leading to turbulence transition in
the ocean (Smyth & Moum 2012; Mashayek 2013). The data to be employed are
summarized in table 1 and consist of the same set of numerical simulations as
were previously analysed in MP13 and MCP13 for other purposes, augmented by
three new simulations, as noted in the table. Each of these simulations describes the
three-dimensional temporal evolution of a horizontally periodic stably stratified shear
layer with the initial background velocity profile ū(z) and Boussinesq density profile
ρ̄(z) defined as

ū(z)=1u tanh
( z

h

)
; ρ̄(z)= ρa −1ρ tanh

( z
h

)
, (2.1a,b)

where 1u and 1ρ are half the velocity and density variation, h is half the shear
layer thickness and ρa � 1ρ is the reference density. As reviewed in MP13, this
configuration has come to be seen as a the standard model problem for the study
of mixing induced by large-scale overturning shear instabilities. As noted in the
introduction, there is an underlying assumption that this background flow distribution
may be taken to be steady, and so if it is induced by the intensification of an even
larger-scale internal wave, the evolution of that wave occurs on time scales which are
long compared to the time scales of the evolution of the primary shear instability of
this flow distribution.

2.2. Governing dimensionless parameters
Three non-dimensional numbers characterize the flow for each case, namely an
appropriate Reynolds number Re, quantifying the ratio of inertial to viscous forces,
an appropriate Richardson number Ri, quantifying the ratio of buoyancy to inertial
forces and the Prandtl number Pr = ν/κm, the ratio of molecular kinematic viscosity
to molecular thermal diffusivity. The initial Reynolds number Re0 =1u h/ν for each
of the simulations of turbulent collapse to be analysed is listed in table 1, and is
defined based on a length scale that is half the shear layer thickness and a velocity
scale that is half the velocity difference across the initial density inversion upon
which the shear is imposed prior to its evolution through primary instability into the
classical Kelvin–Helmholtz billow form. Indeed, since we are primarily interested in
the turbulent phase of flow evolution, the nonlinear Kelvin–Helmholtz billow itself
being an essentially laminar structure, a more relevant definition of the Reynolds
number might be one based upon a length scale determined by the half-shear layer
thickness at the onset of turbulence (to be defined in (3.2)), which is larger than the
initial layer’s half-thickness. This modified Reynolds number is denoted by Ret > Re0
in the table and might usefully be viewed as the relevant parameter for comparison
with shear instabilities observed in nature.

Turbulent mixing events associated with the evolution of a Kelvin–Helmholtz
billows are strongly time dependent and transient. Therefore, it is appropriate to
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Case Re0 Ri0 Ret Reb η3D
c Pairing allowed Source

1 750 0.04 5 200 998 0.24 Yes This study
2 4000 0.04 27 500 7012 0.44 Yes MP13
3 10000 0.04 68 750 12261 0.62 Yes MP13
4 750 0.12 1 700 135 0.18 Yes This study
5 1000 0.12 2 300 180 0.22 Yes MP13
6 2000 0.12 4 600 300 0.32 Yes This study
7 4000 0.12 9 200 640 0.32 Yes MP13
8 6000 0.12 13 750 704 0.36 Yes MP13
9 8000 0.12 18 350 817 0.40 Yes MP13
10 10000 0.12 22 900 1012 0.42 Yes MP13
11 6000 0.14 11 800 614 0.30 No MCP13
12 6000 0.16 10 300 586 0.29 No MCP13
13 6000 0.18 9 200 413 0.28 No MCP13
14 6000 0.20 8 250 131 0.23 No MCP13

TABLE 1. Parameter values for the numerical simulations analysed in this paper. Pr = 1
for all cases. The initial Reynolds number Re0, the initial minimum Richardson number at
z= 0 Ri0, the effective Reynolds number Ret at the start of the fully developed turbulent
period tS

3D and the cumulative turbulent mixing efficiency η3D
c are all defined in the text.

define a criterion to identify the time of onset of turbulence which may be considered
to be ‘fully developed’. Following Caulfield & Peltier (2000) and MP13, we monitor
the inherently three-dimensional turbulent kinetic energy at scales smaller than
the Ozmidov scale (representing the size of the largest eddies not suppressed by
stratification; to be defined in the next section). Generically, this scale-selected
turbulent kinetic energy reaches a maximum magnitude (with respect to time)
following a rapid growth during turbulence transition associated with the break
down of the primary Kelvin–Helmholtz billow. We identify the onset of what we
refer to as fully developed turbulence with this time of maximum magnitude, which
time was named tS

3D (or t3D when context allowed) in Mashayek et al. (2013), and
Ret is also evaluated at this time.

It is important to remember that our convention for the definition of Re0 is different
from that used by SM00, which used the total shear layer depth and the total velocity
difference. Using our convention, their simulations had 340 < Re0 < 1250, with the
majority of the simulations being conducted at Re0' 500. As we demonstrate further
below, the absence of the full ‘zoo’ of instabilities discussed in Mashayek & Peltier
(2012a) and Mashayek & Peltier (2012b) means the properties of flows with such
Reynolds numbers are qualitatively different from flows with Re0 & 4000 in this ‘fully
developed’ turbulence stage of flow evolution, and so it is of value to revisit and
extend their analyses at such larger Re0.

The (minimum) bulk Richardson number, Ri0 = g1ρh/(ρa(1u)2), which applies
initially at the midpoint of the shear layer, is also listed in the table. To keep the
problem tractable, for practical reasons we avoid varying the Prandtl number and set
Pr = ν/κm = 1. It is important, however, to appreciate that there is recent evidence
that the small-scale characteristics of turbulent mixing are affected by larger, more
physically relevant values of Pr (Klaassen & Peltier (1985a), SM00, Mashayek &
Peltier (2011), Bouffard & Boegman (2013), Salehipour & Peltier (2015), Salehipour
et al. (2015)) even at relatively high values of the Reynolds number. A further
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important non-dimensional parameter, insofar as the characteristics of stratified
turbulent mixing are concerned, is the so-called buoyancy Reynolds number Reb:

Reb = E/(νN2), (2.2)

where here we define this parameter in terms of an appropriately externally determined
buoyancy frequency ‘N’ and the (total) kinetic energy dissipation rate E , defined as

E =
ν

2V

∫ (
∂ui

∂xj
+
∂uj

∂xi

)2

dV, (2.3)

where V is the volume of the part of the domain that encompasses the mixing
layer (to be defined in the next section), and the Einstein summation convention
has been employed. Consistent with the scaling arguments originally presented by
Gibson (1980) in support of his concept of ‘fossil turbulence’, energetic stratified
turbulence can be maintained in a form not substantially affected by viscosity for
Reb ∼ O(102) or higher with viscous suppression occurring once Reb falls below
∼O(10) (Ivey & Imberger (1991), SM00, Thorpe (2005), Ivey et al. (2008)). While
O(102)<Reb<O(103) is estimated to be relevant to mixing events in the thermocline
and upper (pelagic) ocean, values of Reb ∼ O(103) and larger have been reported in
the energetic abyssal oceans where mixing plays a key role in maintaining the ocean
meridional overturning circulation (Gargett, Osborn & Nasmyth 1984; Itsweire et al.
1993; Smyth & Moum 2001; Thorpe 2005; Mashayek et al. 2017).

Despite many attempts to characterize stratified turbulence in terms of Reb alone,
it is well known that on the basis of both dimensional argument and physical
understanding it is not sufficient (Mashayek 2013; Mater & Venayagamoorthy 2014;
Salehipour et al. 2016b). A key issue concerning the use of Reb alone to classify
and parametrize turbulence properties in a stratified flow is the time dependence of
the dissipation rate E (and indeed the spatial dependence of dissipation when not
spatially averaged), making it problematic to identify a particular value of Reb with
a specific mixing event. Indeed, for shear-driven turbulence, the dissipation rate E
varies strongly with time, and does not actually exhibit any period when it is not
varying strongly. Therefore, it is appropriate to think of a particular mixing event
as sampling a range of Reb, typically growing to a maximum value rapidly as the
flow undergoes the transition to turbulence, before decaying with time as the flow
relaminarizes.

Finally, the range of Ri0 considered in this study is 0.04 < Ri0 < 0.2. For the
particular velocity and density profiles defined in (2.1), Ri0 is the minimum initial
value of the (local) gradient Richardson number Rig(z, t) defined as

Rig(z, t)=
−

g
ρa

∂〈ρ〉

∂z(
∂〈u〉
∂z

)2 , (2.4)

where angle brackets denote horizontal averaging. The bound Ri0 = 0.2 is chosen to
be below the classical value of 1/4 for the global minimum value of Rig associated
with linear stability of stratified shear flows, according to the Miles–Howard criterion
(Howard 1961; Miles 1961). Ri0 represents the minimum Richardson number in the
pre-turbulent shear layer and so cannot be directly compared to observation-based
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local estimates of Ri0, since such observation-based estimates are inevitably bulk
estimates, due to the lack of resolution in the measurement of background shear. An
effective bulk measure of the Richardson number Ri based on velocity and density
jumps across the entire vertical extent of the mixing region in our simulations is
typically ∼O(1) throughout the turbulent phase of flow evolution.

Cases in table 1 are divided into two categories with respect to the possibility of
an upscale cascade through pairing instability. The simulations previously reported
in MP13 extended over two wavelengths of the primary shear instability in the
streamwise direction, thus allowing for pairing to occur. However, it was shown
in MP13 (for Pr = 1) and Salehipour et al. (2015) (for Pr > 1) that the pairing
instability is suppressed as the Reynolds number increases, and that for Pr = 1, it
becomes significantly diminished for Re0 > 6000. Thus, the simulations in MCP13
(which were all for Re0 = 6000) imposed streamwise periodicity over only one
wavelength of the primary instability. However, as we discuss below in more detail,
the degree to which pairing is diminished at high Re influences the properties of
turbulence sufficiently to bring previously suggested parameterizations of turbulence
into question. Therefore, we have included both types of simulations here, clearly
marking those simulations for which pairing is allowed and recognizing that if these
simulations were to be repeated at even higher relevant Reynolds number the residual
influence of an upscale component of the turbulent cascade could be further mitigated,
if not completely eliminated.

It is important to note that in the limit of extremely small Richardson number
corresponding to effectively unstratified shear layers, the transition to turbulence may
be dominated by vortices which grow on the braid of KHI billows rather than in the
‘eyelids’. Such braid-centred vortices have a much longer spanwise length scale than
the core-centred convective or shear instabilities (Klaassen & Peltier 1985b; Caulfield
& Peltier 1994; Smyth & Peltier 1994; Potylitsin & Peltier 1998, 1999; Caulfield
& Peltier 2000). The spanwise extent of the computational domains were selected
according to their corresponding Richardson number in such a way as to resolve the
expected developing secondary perturbations.

3. Definition of length scales of turbulence
In this section we introduce various length scales which we invoke to characterize

certain aspects of shear-driven stratified mixing events. As discussed in SM00, a
natural way to compare length scales for shear flows with different initial minimum
Richardson numbers is to non-dimensionalize with the (constant for a particular
simulation) length scale Lsc defined as

Lsc = ρa1u2/(4g1ρ)= h/(4Ri0), (3.1)

i.e. the notional length scale expressed in terms of the initial velocity difference and
density difference which amounts to an initial (bulk) Richardson number with the
Miles–Howard marginal value of 1/4.

We consider four dynamically determined and, crucially, inherently time-dependent
characteristic length scales, namely the Kolmogorov (LK), Ozmidov (LO), Corrsin (LC)
and Thorpe (LT) scales. All of these scales typically vary significantly during the
three distinct periods of the turbulence life cycle discussed in the introduction: an
initial or early period of transition to turbulence in which energy is transferred from
the background kinetic energy into turbulent kinetic energy (TKE) due to the ‘break
down’ of the organized flow; an intermediate period of sustained energetic stratified
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turbulence; and a final or late period during which this turbulence decays and the flow
relaminarizes. We note that while LK , LO and LC are most relevant during the fully
turbulent period of the flow, their formal consideration in earlier periods is helpful for
the purposes of the discussions to follow.

To define these characteristic scales in an internally consistent way, it is necessary
to obtain an estimate of evolution of the thickness of the initial shear and density
layers upon which turbulence grows. Following SM00, we define two integral scales
Iρ and Iu which track the evolution of both thicknesses during the three periods of the
shear layer’s turbulent evolution:

Iρ(t)=
∫ Lz/2

−Lz/2

[
1−

(
2
〈ρ〉

1ρ

)2
]

dz, Iu(t)=
∫ Lz/2

−Lz/2

[
1−

(
2
〈u〉
1u

)2
]

dz. (3.2a,b)

where angle brackets denote horizontal averaging. Both scales are defined to have the
same thickness as the initial density and shear layers at the onset of the flow evolution,
and will vary with time as a consequence of turbulent mixing. Since in our study the
Prandtl number is 1, the ratio of these two scales is close to 1. In all definitions and
analysis to be provided from this point on, spatial and volume averages are limited in
the vertical to the mixing layer as defined by the above-defined time-dependent length
scale Iu(t), i.e. over the interval [−Iu/2, Iu/2]. In particular Ret in table 1 is defined
using Iu/2 at the time when the inherently three-dimensional turbulent kinetic energy
reaches its maximum value (i.e. tS

3D as discussed in more detail in Mashayek et al.
(2013)).

Using these integral scales, the instantaneous representations of background velocity
shear, background buoyancy frequency and Richardson number become:

Sb(t)=
1u
Iu(t)

, Nb(t)=

√
g1ρ
Iρ(t)

, Ri(t)=
g1ρ/Iρ(t)
(1u/Iu(t))2

=
N2

b

S2
b
. (3.3a−c)

3.1. Thorpe scale LT

The first of the four scales we discuss is the so-called ‘Thorpe scale’ LT , which is
a measure of net vertical parcel displacements associated with turbulent mixing. The
Thorpe scale calculated from the three-dimensional numerical simulations (L3D

T ) is
determined by a sorting of the density field ρ(x, y, z, t) into a temporally evolving
statically stable staircase of fluid parcels. LT

3D is then the root mean square of the
vertical displacement of the particles from their actual position to the vertical position
in the sorted density field. This approach follows previous studies (Winters et al.
1995; Caulfield & Peltier 2000). During the sorting process, the horizontal area
of each fluid parcel in the mesh in terms of which the numerical simulation is
described is set to that of the full domain, and its vertical thickness is adjusted so
as to conserve mass. This method leads to a statically stable vertical distribution
of density within the domain with the same volume (and hence mass due to the
Boussinesq approximation) as the unsorted domain, but one which possesses the
minimum potential energy that any adiabatic re-ordering of the discrete fluid particles
in the domain could achieve at a given time during flow evolution. The root mean
square of the vertical displacement that each fluid parcel experiences in this sorting
procedure is by definition the three-dimensional Thorpe scale L3D

T . As discussed in
SM00, this estimate will differ from the Thorpe scale calculated by sorting entire
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individual water columns, but typically that difference is found to be relatively small.
More specifically, the column-wise estimate is a measure of overturnings in the
flow, whereas the three-dimensional Thorpe scale is a more general representation
of density displacements and is meaningful even in the absence of overturnings or
when recognizably large-scale overturnings have collapsed into fine-scale turbulence.
Hereafter we will choose L3D

T to be the appropriate time-dependent characteristic
measure of overturning and will simply refer to it as LT . This is a different
convention from that employed in SM00, who used LT to refer to the column-wise
estimate, which must be distinguished from our full three-dimensional estimate L3D

T .
In appendix B we discuss differences between the two and their implications for
the relevance of our work to oceanographic estimates of the Thorpe scale based on
column sorting.

In so far as evolution of LT in shear instabilities of KHI type is concerned, LT is
expected to grow during the initial growth of the primary billows (either precursory
to or concurrent with turbulence transition) and it is expected to decrease as the
flow mixes thoroughly and relaminarizes. As will be discussed in what follows, the
evolution of LT also depends on whether vortex pairing occurs or not. Thus, our
simulations differ from those in SM00 since their simulations were initiated with an
eigenmode of pairing instability. In the subset of our simulations in which the domain
is sufficiently large to house vortex pairing, pairing occurs at low Reynolds number
but its onset is a function of Richardson number and pairing also gets increasingly
suppressed at higher Reynolds numbers. These subtle differences between the various
cases discussed herein and in SM00 (independently of the wide differences in Re0)
have implications for LT evolution and the relevance of LT/LO as a proxy for
turbulence age. We return to this in § 5.

3.2. Ozmidov length LO, Corrsin length LC and Kolmogorov length LK

The Thorpe scale LT is a purely geometrical construct, and is defined in terms of
properties of the evolving density field alone, with no explicit dependence on the flow
velocity field, with the connection being entirely implicit due to the evolving flow
dynamics. To characterize turbulence, it is helpful to resort to length scales constructed
using both intrinsic properties of turbulence such as the spatially averaged total kinetic
energy dissipation rate E and bulk external properties such as the background density
gradient and velocity shear. Ozmidov and Corrsin scales are defined in terms of such
quantities. The (total) dissipation rate has dimensions L2T−3, and so we define LO
and LT as the two natural length scales relating the dissipation rate to the background
buoyancy frequency Nb(t) and the background shear Sb(t) given in (3.3) through

LO(t)=
(

E
N3

b

)1/2

; LC(t)=
(
E
S3

b

)1/2

→ Ri(t)=
(

LC

LO

)2/3

. (3.4a,b)

Physically, for vertical scales larger than both Ozmidov and Corrsin scales, turbulence
with sufficiently elevated values of the dissipation rate noticeably ‘feels’ the influence
of stratification and shear.

As discussed in SM00, the temporal evolution of LC and LO are broadly similar,
although in general LC < LO, unsurprisingly due to the relationship to Ri(t) as defined
in (3.4). In a shear layer of the kind considered here, both Nb and Sb decrease with
time, due to the thickening of the mixing layer captured by the increases in the
integral length scales Iρ and Iu respectively. Therefore, the time evolution of both
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LO and LC is dominated by the time dependence of the (total) dissipation rate E ,
as defined in (3.4) with both reaching their peak values during the most energetic
intermediate period of turbulence in which the flow is replete with secondary and
higher-order instabilities. Similarly to LT , we also expect LO (and LC) to decay as the
turbulence decays, as E markedly decreases from its peak value.

The total dissipation rate may also be used to define a further natural length scale,
namely the Kolmogorov dissipation scale LK , where

LK =

(
ν3

E

)1/4

, (3.5)

and represents the scale below which the smallest eddies in the momentum field are
viscously dissipated. Since in our cases Pr=1, this is also the scale at which diffusion
completely homogenizes the density field (i.e. LK = LB = (νκ

2
m/E)1/4 where the latter

is the Batchelor scale). Unlike LO and LC, LK reaches its minimum value during the
intermediate period when the turbulence is most energetic and hence the dissipation
rate is largest. Before the flow is turbulent, or during the late turbulent decay period of
the flow, LK tends to an asymptotic value set by the small finite rate of dissipation of
kinetic energy associated with the laminar shear layer, since here we choose to define
LK using the total dissipation rate E , which does not tend to zero when the flow is
laminar. Similarly, LO and LC are also defined using E , and so these length scales are
still well defined during the stage of flow evolution when the transition to turbulence
is occurring.

3.3. Relative magnitudes of the scales
Consistently with the results of SM00 for flows with substantially smaller Re0, early
in the flow evolution, LT can be substantially larger than LO, even when LO is
defined using the total dissipation rate. We investigate this scale separation in the
next section. The turbulent dynamics at this early stage is highly anisotropic due to
the influence of shear and stratification on scales above the Ozmidov scale, and the
properties of the turbulence can be changing rapidly. The scales between LO and LC

are still anisotropic, but largely influenced by shear alone, while the scales between
LC and LK may be considered to exhibit nearly isotropic three-dimensional turbulence,
provided of course that there is sufficient scale separation between LC and LK to
allow for an inertial cascade. Indeed, since we expect LC . LO, this requirement for
sufficient scale separation to allow for an inertial cascade of isotropic turbulence
is typically unaffected by the background stratification. LT , LO, LC and LK are all
strongly dependent on Re0 and Ri0, as well as typically strongly time dependent. In
§ 6 we will show that the extent to which these various subranges vary, and indeed
even exist in any meaningful sense, has important implications for the irreversible
mixing properties of the flow.

It is important to note that while LC, LK and LO are mathematically well defined
even in the laminar state of the flow, they only become dynamically relevant when the
total dissipation is dominated by turbulent dissipation rather than the laminar phase
which is only weakly dissipative. As we will show, the sharp increase in the total
kinetic energy dissipation rate E during the rapid transition to turbulence marks sharp
changes in these scales in a way which will allow us to employ their evolution through
the transition process to understand the mixing properties of the flow.
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3.4. The buoyancy Reynolds number in terms of length scales
It is instructive to note that the buoyancy Reynolds number can now be naturally
interpreted as a ratio of length scales. If we choose to use Nb as defined in (3.3) as
the appropriate choice for the buoyancy frequency in the definition for the buoyancy
Reynolds number Reb as defined in (2.2), we obtain

Reb =

(
LO

LK

)4/3

. (3.6)

Therefore, the already noted observation that Reb & O(100) is required for stratified
turbulence to be sufficiently vigorous to be largely unaffected by viscosity is
equivalent to the requirement that there is a sufficiently wide range of turbulent
scales unaffected by both viscosity and stratification (Gargett et al. 1984; Thorpe
2005; Bartello & Tobias 2013). As discussed in detail in Salehipour et al. (2016a),
there are a variety of different ways in which a buoyancy Reynolds number may be
defined, depending on the specific choice of the dissipation rate, and in particular
the buoyancy frequency. Therefore, specific numerical comparisons of Reb between
different studies must be treated with caution.

4. Time evolution of length scales in direct numerical simulations
In this section we consider the temporal evolutions of Reb and the various length

scales defined above. We consider these evolutions in our series of DNS, covering a
range of Richardson and Reynolds numbers.

4.1. Time evolution of Reb

Figure 2 illustrates the time evolution of Reb for simulations with different Re0 at
Ri0 = 0.12 (a) and for simulations with different Ri0 at Re0 = 6000 (b). The non-
stationary nature of intermittent mixing by shear instability is clearly shown in the
figure through the non-monotonic temporal evolution of Reb.

Figure 2(a) shows a qualitative change in the evolution of Reb for sufficiently large
Re0 & 4000. At this intermediate Ri0, energetic time-dependent turbulence (i.e. with
Reb > 200) is maintained over a considerable fraction of the intermediate phase of
the turbulence life cycle only for Re0 = 4000 and larger. This is a critical difference
from the simulations reported in SM00. It is apparent that any extrapolation on the
basis of the results of lower Re0 experiments or simulations (such as those reported
in SM00) to geophysical flows which occur at much larger Re must be treated with
caution. Quantitatively, while Reb (defined in the fashion we use here) never exceeds
150 for Re0 = 750, (typical of the simulations reported in SM00) Reb remains above
200 for ∼75 % of the turbulence life cycle for Re0 = 6000, when Ri0 = 0.12. The
structure of the time evolution of Reb also exhibits qualitative differences between
the simulations with lower Re0 and higher Re0 & 4000. This observation is consistent
with our hypothesis that a rich ‘zoo’ of secondary instabilities (only present at
sufficiently high Re0) qualitatively modifies the subsequent turbulent evolution once
those instabilities have broken down.

We now turn our attention to the dependence on Ri0 of the behaviour of the flow
at such sufficiently high Re0 to sustain vigorous turbulence. We consider a range
of Ri0 for that turbulence to be non-trivially affected by stratification. As shown in
figure 2(b), it is clear that this ‘energetic’ turbulence (i.e. with Reb > 200) remains
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FIGURE 2. Time variation of buoyancy Reynolds number Reb for: (a) cases 4–10 of
table 1, showing the variation with Re0 for Ri0 = 0.12, all with vortex pairing allowed
(noting that pairing is increasingly suppressed as Re0 increases); (b) cases 11–14 of
table 1, showing the variation with Ri0 for Re0= 6000 for simulations with vortex pairing
prohibited by design. Time is non-dimensionalized by the eddy turnover time scales h/1u
where 1u and h are characteristic scales of the shear flow as defined in (2.1). The onset of
fully developed turbulence for each case corresponds to the time tS

3D when the inherently
three-dimensional turbulent kinetic energy peaks following a rapid growth during the
transition to turbulence (see Caulfield & Peltier (2000) and Mashayek et al. (2013) for
details). This time approximately coincides with the first peak of LO and also of Reb as
defined here. The dashed line in (b) marks Reb = 20 which nominally marks the lower
bound of stratified turbulence, even if not truly fully developed (see SM00 for a further
discussion).

long lived (i.e. spans a significant portion of the turbulence life cycle) for all Ri0
except Ri0= 0.2. At this stage it is not clear why this qualitatively different behaviour
occurs. One possibility is that the behaviour is associated with the Reynolds number
being too small for this particular choice of Ri0, associated as it is with a primary
instability with a growth rate so small that it may be adversely affected by the
diffusion of the mean profiles, even at these Reynolds numbers. Alternatively, the
behaviour may be due to the fact that the Richardson number is so close to the critical
value of 0.25 that the saturation amplitude of the nonlinear billow may so small that
it leads to a qualitative change in the flow dynamics. Observational evidence (see for
example the recent discussion of turbulence in the eastern equatorial Pacific by Smyth
& Moum (2013) and in the Romanche fracture zone by Van Haren et al. (2014))
suggests that at the very large Re0 characteristic of geophysical situations, instability
and the ensuing turbulence onset soon after the Richardson number drops below 0.25,
although it is extremely difficult to trace the dynamics precisely at the critical value,
and so further investigation of shear instability for high Re0, and Ri0 ‘close’ in some
sense to the critical value of 1/4 is warranted.

Indeed, when considering geophysical relevance, it may be necessary to treat with
caution the dynamics of flows with initially small values of Ri0, as it is not at all clear
how such shear instability would be realizable in reality, as discussed above. And as
mentioned earlier, the treatment of such low Ri0 cases numerically requires particular
care in terms of the choice of the spanwise extent of the domain to accommodate
the braid instabilities which dominate turbulence transition in the limit of vanishing
stratification. The importance of this issue is clearly connected to the rate at which
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the shear is diminished in a region of fixed background density stratification. If this
time scale is sufficiently short, it is certainly at least plausible that a low Richardson
number regime would be relevant.

4.2. Influence of Richardson number
The fundamental requirement that Re0 be sufficiently large and (perhaps also that
Ri0 is a range where the flow is non-trivially affected by stratification) to capture
geophysically realistic turbulent dynamics can also be observed in the way that
the time evolution of the various length scales defined above vary in time for our
different simulations. We are particularly interested in identifying what we believe
should be ‘generic’ behaviour for high Re0 − Ri0 flow, and what is affected by
either Re0 or Ri0 being too ‘small’ in some sense. We showed in MCP13 that, in
agreement with earlier theoretical predictions, for Ri0 = 0.16 ∼ 1/6 mixing is most
‘efficient’ at sufficiently high Reynolds number. Here, efficiency is the fraction of
energy available to turbulence that irreversibly increases the potential energy of the
system. (We define efficiency precisely, and discuss this issue further in § 6.) This
efficient mixing (at Ri0 = 0.16, Re0 = 6000, Pr = 1 in MCP13) is due to an optimal
excitation of secondary instabilities. Ri = 0.16 is sufficiently high to induce a large
number of baroclinically induced secondary instabilities yet it is not too high to
suppress the turbulence. Therefore, here we choose to consider that flow simulation
as the ‘canonical’ case.

In figure 3(b), we plot the various length scales defined above for this simulation
(case 12 in table 1). For completeness, we have also included the cases with Ri0 =

0.14, Ri0 = 0.18 and Ri0 = 0.20. Similarly to figure 2(b), the evolution of the flow
with Ri0 = 0.2 is qualitatively different from the other three simulations.

Focusing on figure 3(b) for the simulation with Ri0 = 0.16, certain generic
characteristics are as expected. Firstly, the Kolmogorov length scale LK (plotted
with a dotted line) decreases rapidly at turbulence onset, and then recovers relatively
slowly towards its laminar value as the turbulence decays after the turbulent kinetic
energy saturates (i.e. peaks for the first time). Similarly, both the Ozmidov scale
LO (plotted with a solid line) and the Corrsin scale LC (plotted with a dashed line)
rapidly increase at transition, and then decay slowly towards their initial laminar
values. Remembering that for clarity we are plotting 10LK and 2LC, it is clear that
there is a wide scale separation between LO and LK as expected throughout the period
(up to approximately t ' 125) when Reb > 200, demonstrating that there appears to
be the possibility for a range of turbulent length scales which are unaffected by both
viscosity and stratification.

Perhaps more surprising is the evolution of the Thorpe scale LT (plotted with
a dashed-dotted line). LT grows during the initial roll up of the primary billow,
and it grows substantially before turbulent motions onset, signalled by the marked
drop of LK . After reaching a peak before the transition to turbulence, LT actually
decreases rapidly during the period of most intense turbulent motion, indicative of
vigorous irreversible, and inherently small-scale mixing, associated with the rich ‘zoo’
of secondary instabilities discussed in detail in Mashayek & Peltier (2012a,b). We
observe that LT > LO during the transition to the turbulent phase of flow evolution
while LT < LO beyond the point of most intense turbulence (i.e. the time tS

3D with
largest LO and smallest LK). Consistently with the recent detailed analysis of Mater
& Venayagamoorthy (2014), this demonstrates that it is by no means appropriate to
assume that LO is ‘the limiting size’ of overturns in strongly stratified turbulence
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FIGURE 3. Time variation of the various turbulent length scales (normalized by LSC as
defined in (3.1)) for (a) Ri0 = 0.14 (case 11 of table 1), (b) Ri0 = 0.16 (case 12), (c)
Ri0 = 0.18 (case 13) and (d) Ri0 = 0.2 (case 14), all cases for Re0 = 6000.

during the turbulence growth phase. That LT > LO in this phase actually suggests
that the shear-driven turbulent mixing events considered here may be a candidate
for creating the canonical layered structures within the previously proposed ‘strongly’
stratified turbulence scaling regime (see for example Brethouwer et al. 2007).

Furthermore, the relative time dependence of the Thorpe scale and the Ozmidov
scale is also of interest. Typically at these Reynolds numbers and Richardson numbers,
LT ‘flares’, in that it increases rapidly and in turn decreases rapidly before undergoing
a slower decay once it has reached very small values. LO also increases rapidly, but
effectively only when LT has reached its maximum. Interestingly, it appears that LO
reaches its maximum (when the turbulence is most intense, in that E is largest) very
close to the time when LO ≈ LT . Subsequently, LO ‘burns’, in that it decreases at a
noticeably slower rate than LT , suggesting a much more extended period of strong
turbulence as opposed to strong overturning. We will further discuss the importance
of the evolution of LT relative to LO in § 5.

Figure 3(d) shows that the behaviour is qualitatively different when Ri0 is increased
to 0.2 (noting the dramatic reduction in the extent of the vertical axis with increase
in Ri0). The turbulence is undoubtedly much less intense, with the Ozmidov scale
peaking at a markedly reduced maximum value as Ri0 increases. The relative time
dependence of LO and LT is also qualitatively different. For Ri0=0.2, the Thorpe scale
similarly peaks later and at lower values, and decays more slowly. These properties are
indicative of a reduction in amplitude and delay and slowing of the primary overturns
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FIGURE 4. Time variation of the various turbulent length scales (normalized by LSC as
defined in (3.1)) for: (a) case 8 of table 1, with Re0 = 6000 and Ri0 = 0.12; (b) case 4
of table 1, with Re0 = 750 and Ri0 = 0.12.

upon which turbulence grows and decays. They also imply a qualitatively different
mixing dynamics from the other three cases shown. Indeed, unlike the Ri0= 0.16 case,
at Ri0=0.2 the time scale over which LO increases and that over which it subsequently
decays are similar. Furthermore, the dissipation rate does not grow as much above
its laminar value in this simulation compared to the Ri0 = 0.16 simulation, and so
there is not such a wide length scale separation between the Kolmogorov scale LK
and the Ozmidov scale LO, indicating that both stratification and viscosity are likely
to be modifying the turbulence dynamics substantially. This all constitutes evidence
that the transition to turbulence is relatively weak in this flow, and so may well not
be typical of the behaviour of intense geophysical turbulence at very high Reynolds
number.

4.3. Influence of Reynolds number
We now investigate how the generic behaviour for the time dependence of the various
length scales shown by the simulation with Ri0 = 0.16 and Re0 = 6000 in figure 3(b)
is affected by variations in Re0 and Ri0. Considering the effect of variations in Re0
first, in figure 4 we plot the time evolution of the various length scales for simulations
with Re0 = 6000 and 750 both with Ri0 = 0.12. The time dependence of the various
length scales for the higher Re0 is generally similar to the Ri0 = 0.16 case shown
in figure 3(b). There is once again a ‘flare’ in LT which appears to trigger a rapid
increase in LO (and LC) followed by a slower decay towards laminar values. Indeed
for this value of Ri0, there is essentially a period of relatively constant LO, indicative
of sustained turbulence, and there is only a local (as opposed to global) maximum
in LO as LT drops steeply indicating the break down of the primary billow related
overturning.

Clearly, the lower Reynolds number simulation with Re0 = 750 (of the same order
as in the flows described in SM00) shown in figure 4(b) is qualitatively different.
There is a substantially smaller-scale separation between LO and LK . Perhaps even
more significantly, the temporal evolution of the Thorpe scale LT , both taken in
isolation and relative to the time evolution of LO is also qualitatively different. The
initial rapid decrease in LT is not associated with a peak in LO, with the most active
turbulence occurring substantially later, principally because of the absence, at this
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FIGURE 5. Time variation of the various turbulent length scales (normalized by LSC as
defined in (3.1)) for: (a) case 2 of table 1, with Re0 = 4000 and Ri0 = 0.04; (b) case 1
of table 1, with Re0 = 750 and Ri0 = 0.04.

Reynolds number of the ‘zoo’ of secondary instabilities which affects the simulations
shown in figure 3. These are yet more data demonstrating that the evolution of length
scales in a stratified shear flow changes markedly as Re0 becomes sufficiently large.
Therefore, we believe it is clearly necessary to consider flows with Re0 & 4000 to
investigate assumption IV discussed in the introduction, i.e. that there is a clear
separation of scales between the background flow and the superposed (assumed)
isotropic turbulence.

4.4. Summary of evolution of various scales
In summary, we wish to stress three key aspects of the results presented in this section.
First, figures 2–5 show that the assumption of stationary stratified isotropic turbulence
is very rarely satisfied, at best only in the energetic turbulence phase of flow for
Reynolds numbers sufficiently large and close to a Richardson number ‘sweet spot’
at which mixing is optimal. According to MCP13, this sweet spot value of Ri0 is
defined by two competing effects: Ri0 is sufficiently small so that turbulence is not
completely suppressed by stratification and yet is sufficiently large for the flow to
be replete with buoyancy-driven secondary and higher-order instabilities, which are
only possible at sufficiently high Re0. From a length scale perspective this regime is
characterized by the existence of a sufficiently wide separation between LO and LK .
Importantly, these scales are turbulent length scales, by construction distinct from the
length scales of the background mean flow. Second, over the entire parameter space
we cover herein, the turbulence growth and decay periods of flow evolution, in which
assumptions of isotropy and stationarity are clearly violated (as discussed in Smyth &
Moum (2000b) and Mashayek & Peltier (2013)), together constitute a large fraction
of the typical turbulence life cycle. And finally, at sufficiently high Re0 and Ri0 in the
correct range, there appears to be a typical or generic coupled time dependence of LT
and LO. LT increases rapidly initially before undergoing a slow decay at very small
values. LO, on the other hand, begins to grow rapidly when LT starts to decrease. LO
reaches its maximum when it is ∼LT , and then decays noticeably more slowly than
LT in the decay period of turbulence. In the next section we turn our attention to the
ratio between these two length scales, in particular in this apparently generic regime
for Ri0 sufficiently large, but not too large, in flows at high Re0.
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5. LO/LT as a proxy for turbulence age and efficiency
As originally argued by Thorpe (1977), (see e.g. Scotti (2015) for a detailed

discussion) direct measurements of LT can be used to infer dissipation if LT can be
shown to be a simple function of LO. In such a case, the dissipation rate can be
calculated from the expression

E = R2
OTL2

TN3, (5.1)

where
ROT =

LO

LT
. (5.2)

Indeed, further progress can be achieved by making the further (though not always
justified, see for example MCP13) assumption due to Osborn (1980) that the buoyancy
flux B, defined as

B=
1
V

∫
g
ρa
ρw dv, (5.3)

can be linearly related to the dissipation rate E through a ‘universal’ turbulent flux
coefficient Γ (sometimes referred to as ‘mixing efficiency’). Using this assumption, a
measurement of the Thorpe scale LT along with an appropriate buoyancy frequency
N are commonly used in the oceanographic research literature (see e.g. Dillon 1982,
Thorpe 2005, Kunze et al. 2006) to estimate diapycnal eddy diffusivity through

κT ≡
B
N2
=

B
E

E
N2
= Γ R2

OTL2
TN. (5.4)

As discussed in detail by Mater et al. (2015) and Scotti (2015), estimates of the ratio
ROT are very sensitive to the existence of large-scale overturnings within the flow, and
since the ratio is squared in (5.4), uncertainty in its value has a marked effect on
estimates of diapycnal diffusivity.

Furthermore, the time-dependent properties of the ratio ROT are also very important,
as its particular value is often used to infer the ‘age’ of the turbulence involved in
observed mixing events (Ivey & Imberger 1991; SM00; Smyth et al. 2001; Bouffard
& Boegman 2013). Based on direct numerical simulations of Kelvin–Helmholtz
billows at relatively low Re0, SM00 reported that ROT was typically observed to
increase with time (see for example their figure 15) and argued in favour of the
observational and entropy-based arguments of Wijesekera & Dillon (1997), that ‘older’
overturnings should be characterized by large values of ROT > 1. We also observe
the same qualitative trend as is shown in figure 6 which shows the time evolution
of ROT for the same two groups of cases shown in figure 2. This is consistent
with our ‘generic’ observation that, after its initial flare to very large values, LT
decreases rapidly, to very small values, and in particular to values smaller than the
more slowly decaying ‘burning’ LO. For the single wavelength simulations in (b),
ROT is indeed an increasing function of time. Conversely, for simulations shown in
(a) which include two wavelengths of the primary Kelvin–Helmholtz instability and
span an order of magnitude increase in Re, ROT grows rapidly at transition, reaching
a maximum around the time tS

3D when the inherently three-dimensional turbulence
saturates, and then decays rapidly before showing a second oscillatory growth phase
driven by variations in the rate of decay of LT and LO, due to the complicating
merging dynamics. As already discussed, such merging dynamics is suppressed for
flows with higher Re0, and so we do not believe that dynamics associated with merger
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FIGURE 6. Time evolution of the ratio ROT = LO/LT over the turbulent life cycle of flow
for the same cases as those shown in figure 2: (a) shows results from simulations with
Ri0 = 0.12 and 750< Re0 < 104 (with pairing), while (b) shows results from simulations
with Re= 6000 and 0.12< Ri0 < 0.2 (with no pairing).

of primary KHI billows is characteristic of geophysically relevant flows. This belief
is reinforced by the fact that perturbations in real flows are highly unlikely to be
‘tuned’ to trigger merger events, and are typically much more broadband and noisy
in structure, characterized by low amplitude or residual turbulent motions. Indeed,
we are unaware of observations of merging billows in geophysical flows in the
atmosphere and ocean, though there is much evidence of observations of long trains
of individual billows.

We note that while SM00 simulations were also conducted with streamwise extent
which allowed for the development of two wavelengths of the primary instability,
similarly to those shown in figure 6(a), their ROT evolution differs qualitatively and
quantitatively from our results. They found a more monotonic increase in ROT with
time during the decay period of turbulence. We believe that the difference between
their results and ours is due to differences in the simulations’ initializations. SM00
initialized their simulations with non-trivial amplitude in the eigenfunction of pairing
instability, leading to a relatively rapid pairing of KHI billows early in the simulation,
which amounts to an initial pre-turbulent significant increase in LT , and subsequently
a marked decrease in LT in the turbulent period of flow once vortices have paired.
This apparently leads to a monotonic increase in ROT in the turbulent phase of the
flow. On the other hand, our two wavelength simulations are not forced explicitly with
the pairing mode eigenfunction and also are conducted at very high Reynolds number.
As discussed above, flows with such higher Re0 are associated both with a significant
suppression of the pairing instability, and with fundamentally different character
in the transition mechanisms (i.e. the full ‘zoo’ of secondary instabilities) and the
intensity (quantified by the elevated values of Reb) of the ensuing turbulence. Perhaps
unsurprisingly, such differences lead to a characteristically different ROT behaviour
during the later stages of flows in which pairing (even if highly suppressed) manifests.

In summary, our results in this section suggest that the evolution of ROT in
turbulence life cycles initiated by shear instability is very sensitive to details of the
flow evolution such as the existence or lack thereof of an upscale cascade through
pairing instability flow initialization. Therefore, it is at least plausible that the time
dependence of ROT is likely to vary according to the degree of ambient or residual
turbulence within a flow in which KHI billows develop, as is to be expected for a
realistic geophysical flow. In spite of the relevance of ROT as a proxy for turbulence
age, details of its evolution play an important role in characterizing the properties
of the turbulence itself. Essentially, LT represents the vertical overturning scale of
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turbulence and so represents the large-scale stirring at which energy is being injected
into the perturbation fields, while LO represents the largest eddies which are not
strongly influenced by stratification, remembering that eddies smaller than LO and
larger than LC are still affected by the ambient shear. Therefore, an optimal injection
scale for the cascade of energy from larger-scale stirring to dissipation is expected.
This corresponds to the stirring injection scale (LT) occurring at the largest scale
not suppressed by stratification (LO), i.e. when LO ∼ LT . Precisely this behaviour was
observed by Ivey & Imberger (1991), as this relationship corresponds to the optimal
value for mixing of their turbulent Froude number FrT = (LO/LT)

2/3
' 1. As we see

next, in this phase of flow evolution mixing is very efficient. Full discussion of the
turbulence cascade and anisotropy in turbulence induced by KHI over a wide range
Reynolds and Richardson numbers is provided in Mashayek & Peltier (2013). Here
we have built upon that study to connect it to the turbulent length scales discussed
in this section and through that connection to mixing.

6. Implications for the quantification of mixing

The ‘mixing efficiency’, which we denote here by η, is an important quantity
which is commonly used for quantifying diapycnal mixing rates from observations
of shear-induced turbulence in the ocean and atmosphere. We define η within a
Boussinesq framework as the ratio of the kinetic energy converted to potential energy
irreversibly via a net irreversible vertical buoyancy flux, to the total irreversible
conversion of kinetic energy to both potential energy and internal energy via viscous
dissipation. This quantity is sometimes also referred to as the flux Richardson
number, although the two quantities are not exactly the same at finite Reynolds
numbers, as the denominator of the flux Richardson number is usually defined to be
the production of turbulent kinetic energy (see Peltier & Caulfield (2003), MCP13 and
Rahmani, Lawrence & Seymour (2014) for more discussion). The mixing efficiency
is widely assumed to be η ∼ 0.15 − 0.2, equivalent to the canonical model due to
Osborn (1980) that the turbulent flux coefficient Γ (as defined in (5.4)) is given by
Γ ' η/(1 − η) 6 0.2 despite the growing evidence demonstrating that it is highly
variable in shear-induced mixing (see the recent results of MCP13 and Rahmani et al.
(2014)).

As discussed in more detail in Caulfield & Peltier (2000) and Peltier & Caulfield
(2003), mixing efficiency can be considered to be a time-dependent quantity, and so it
is natural to consider both instantaneous values ηi(t), and some appropriate cumulative
mixing efficiency ηc for a given mixing event. To calculate ηi from our simulation
results, we calculate the net instantaneous irreversible increase in the potential energy
of the system, which represents diapycnal mixing M, and then define

ηi =
M

(M+ E)
, (6.1)

where E is the total dissipation rate as defined in (2.3), and M is determined using the
sorting algorithm as initially described by Winters et al. (1995) and slightly modified
in Caulfield & Peltier (2000). More specifically, M is defined as the net change in the
background potential energy of the system which may be calculated by an adiabatic
sorting of the fluid parcels in the whole domain as was described earlier in calculation
of the Thorpe scale. Since the background potential energy may only be increased,
any change in it will correspond to diapycnal mixing in our set-up with periodic
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boundary conditions. We can also define a cumulative mixing efficiency ηc as is now
conventional as

ηc =

∫ te

ts

M dt∫ te

ts

M dt+
∫ te

ts

E dt
, (6.2)

for appropriately chosen start time ts and end time te. We set ts = tS
3D, and te to be

the end of the simulation (when the flows have typically relaminarized) to define η3D
c ,

which we list in table 1 for each of the simulations. (See Mashayek et al. (2013) for
more discussion.) In what follows we divide the turbulent life cycle of each simulation
into a number of intervals and average η over each period to obtain a locally averaged
efficiency ηa for each interval. Each period is set to be of 10 eddy turnover time scales
(defined as h/1u where 1u and h are characteristic scales of the shear flow as defined
in (2.1)), keeping in mind that the turbulent life cycle of the simulations in table 1
(nominally defined as the period over which 20< Reb) typically extends over 200 to
400 turnover time scales.

In figure 7(a) we show the results of calculations for simulations 6–14 of table 1.
This subset includes cases with Re0 sufficiently high to represent sustained turbulence
for a considerable fraction of flow evolution, and with Ri0 sufficiently large for the
behaviour to share the key ‘generic’ characteristics of the simulation with Ri0 = 0.16
as discussed above. To connect the interpretation of evolution of efficiency of mixing
in the simulations with the time dependence of the various length scales as described
in the previous section, figure 7 shows a scatter plot of LT versus LO, with the symbol
colours representing ηa. The lines in the figure represent LT = LO, LT = 4 × LT and
LT = 0.25 × LO, the latter two providing bounds on the LO/LT ratio in observations
(see Thorpe 2005, for discussion and references). As discussed earlier, symbols for
which LT > LO correspond to the period in flow evolution in which eddies (of scales
L6 LO) associated with secondary instabilities grow rapidly and efficiently within the
primary overturn, while symbols with LT < LO correspond to the final period of the
flow evolution when the turbulence is decaying and stirring is suppressed by ambient
stratification. It is apparent that mixing is most efficient during the earlier period,
particularly when LT ∼ LO, (precisely as assumed by Ivey & Imberger (1991)) since
the inertial subrange is very efficiently energized at the upper bound (stirring scale)
by the available potential energy reservoir stored in the primary overturn. As stirring
by large eddies becomes suppressed by stratification in the later period of turbulence,
mixing is less efficient. Thus, the high efficiency of mixing at LO ∼ LT appears to
be a direct consequence of the nature of turbulence induced by shear instability at
high Reynolds number. Importantly, this violates assumption IV as described in the
introduction, because the length scale of the overturning is most definitely not widely
separated from the important length scales of the turbulent motions.

Furthermore, since this most efficient mixing occurs when LO 6 LT , which is also
in the build up to the instant when both LO and Reb are maximum, the actual total
amount of mixing in the build up to LO ∼ LT is also maximized. In other words,
since Γ ' ηa/((1 − ηa)) (for caveats see MP13 and Salehipour & Peltier (2015)),
the observation that ηa is maximum when Reb is maximum strongly suggests that the
turbulent diffusivity κT is also maximum at that time, since using (2.2) and (5.4) we
have,

κT = Γ
E
N2
' ν

ηa

(1− ηa)
Reb. (6.3)
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FIGURE 7. Scatter plot of LT versus LO from DNS (a) and observations (b,c,d). (a) From
DNS cases 6–14 of table 1. (b) From FLX91 oceanic dataset collected ∼1000 km off the
coast of northern California. (c) From the TIWE oceanic dataset collected at the equator at
140 ◦W. (d) From lake observations made at thermocline depth in Lake Erie in 2008–2009.
More information about the sources of these datasets are provided in appendix A. The
lines in each panel represent LT = LO, LT = 4× LO and LT = 0.25× LO. Symbol colours
and colour bars represent mixing efficiency ηa. Note that the axes in (a) are normalized
by Lsc as was the case throughout this paper while in (b–d) they are in units of metres.

This suggests that the flow at this time is so organized as to maximize the amount
of vertical mass flux, because of the combined effects of the turbulence being most
intense (i.e. with largest Reb) and most efficient (i.e. with largest ηa and hence largest
Γ ).

The above description of the dependence of mixing on the temporal evolution of
LO and LT was based on simulations of Kelvin–Helmholtz instabilities that form the
basis of our work. So, it is legitimate to question their generality insofar as the much
more dynamically diverse ocean mixing process is concerned. However, we conjecture
that the observation that the existence of distinct overturns provides sufficient available
potential energy that can feed efficient turbulent mixing is not a special phenomenon
only occurring in KHI flows, but is a more generic property of high Reynolds number
stratified mixing processes, triggered by a wider range of mechanisms, including other
shear instabilities, hydraulically controlled flows, or breaking internal waves. Clearly
further work is warranted to test this conjecture by investigating the mixing associated
with these wider range of mechanisms.
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To explore this further, figure 7(b–d) shows similar scatter plots to that from our
DNS in (a). The data for panels (b,c) come from observations made in the thermocline
of the ocean while the data for panel (d) come from one of the great lakes (Lake
Erie) in the United States. Mixing in these natural environments is induced by a
mixture of dynamical processes including vertically propagating internal waves and
shear instabilities of different types. Panels (b–d) share the same pattern with panel
(a) in that mixing efficiency is larger for LT > LO, further highlighting the role of
natural overturns in determining the efficiency of mixing.

We acknowledge that our simulations are highly idealized and that the observational
data used in figure 7 are based on a number of crude assumptions made for practical
reasons; importantly, the calculation of mixing efficiency from data is difficult and
involves large inaccuracies. Furthermore, there seem to be some systematic and as yet
unexplained differences between how data are skewed about the LO = LT line in the
four panels. For example, the lake data in figure 7(d) appear to be more qualitatively
similar to the numerical data in figure 7(a) than to the two oceanographic datasets
in figure 7(b,c). Nevertheless, our main point here is neither dependent on the actual
value of mixing efficiency nor is it sensitive to the above-mentioned inaccuracies and
idealizations. Essentially, as long as distinct overturns exist throughout turbulence
evolution, they play a non-negligible role in determining the efficiency of mixing.
This point is one of the main messages of this paper.

We stress that this point is important for two reasons. First, as discussed earlier,
conventional parameterization schemes are based on assumptions which are typically
better satisfied during the turbulence decay period (i.e. towards the left in each
panel). Second, the majority of studies of DNS of shear instabilities have focused
on the decay period by filtering the earlier period based on the (at times implied)
justification that the early period does not conform to a plausible ‘ocean turbulence
regime’, assumed by (for example) Osborn (1980) to be well modelled as stationary
isotropic turbulence where the steady turbulence production is balanced by an isotropic
dissipation rate and a relatively small (positive) buoyancy flux. In combination, these
assumptions appear to have led to a circular argument for filtering the part of
simulations that does not fit the parameterizations even though the simulations are
carried out for the very purpose of improving the parameterizations. It was shown in
Mashayek & Peltier (2013) that in direct numerical simulations of shear instabilities,
the early period of turbulence makes a non-negligible contribution to the net buoyancy
flux over a turbulence life cycle. Furthermore, the analysis of Smyth et al. (2001)
showed that the LO < LT patches in data used in figure 7 make a large contribution to
net mixing as well. So, as long as large overturns exist, the contribution of the earlier
period of turbulence in which distinct overturns and superimposed turbulence co-exist
needs to be taken into account in both parameterization schemes and in analysis of
numerical simulations. Of course, it is important to remember that in the observational
data there is no ‘time stamp’, in that unlike the simulation data there is no way to
follow the time evolution of an individual mixing event. However, the observational
data are at least consistent with the idea that LO < LT patches are associated with
vigorous overturnings that will subsequently lead to increased turbulent mixing, and
hence LO remaining larger for a longer time than LT , i.e. that LT ‘flares’ while LO
‘burns’, analogously to our simulations.

The contribution of overturns is partially filtered in conventional parameterizations
by assumptions of isotropic stationary small-scale turbulence existing at a scale
distinctly separated from that of the background flow. It has also often been left out
of analysis of DNS data for several reasons. Distinct overturns observed in early DNS

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f T

or
on

to
, o

n 
30

 A
ug

 2
01

7 
at

 1
6:

17
:2

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

37
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.374


Optimal mixing in stratified mixing layers 545

are often thought to be artefacts of the low Re idealized nature of such simulations
(Peltier & Caulfield 2003) and furthermore, the argument has been advanced that
the later-time turbulence is more likely to be representative of stratified turbulence
events, not necessarily generated by flows initially strongly unstable to KHI billows
(Salehipour & Peltier 2015; Salehipour et al. 2015, 2016a).

However, recent direct numerical simulations at high Reynolds number and
numerous recent observations of deep ocean turbulence have clearly shown that
distinct overturns not only can exist, but in fact are typical in strong mixing zones. It
almost appears as if the flow is trying to maximize efficiency of mixing by providing
an efficient energy pathway into turbulence by stirring and storage of potential energy
through overturns. Recent field experiments focused on abyssal ocean mixing (where
mixing plays a key role in closure of abyssal branch of ocean meridional overturning
circulation) have all found turbulence to be induced by continuous excitations of
large overturns scaling from a few metres up to 500 metres (Ferron et al. 1998;
Frants et al. 2013; Mater et al. 2015; Voet et al. 2015). Thus, we conjecture that
underestimation of mixing due to partial neglect of the role of overturns may well
obscure significantly the apparent tendency of turbulence to maximize its mixing
efficiency through such overturns.

We think it useful to reiterate our reasoning for not adding data from low
Ri0 cases to figure 7(a). Since the growth rate of the primary Kelvin–Helmholtz
instability is a monotonically decreasing function of Ri0, it is tempting to decrease
Ri0 to reduce computational cost since the simulation will in principle need to be
conducted for a shorter time interval for a given computational domain. However,
this reduction in computational cost is likely to be swamped by the need to consider
larger computational domains, to capture at least some of the merging dynamics,
which inevitably introduces large-scale stirring. Furthermore, as discussed earlier,
the spanwise extent of the domain may possibly need to be expanded to host
braid instabilities dominating turbulence transition in the weak stratification limit.
Suppressing the stirring associated with such large-scale streamwise and spanwise
secondary instabilities inevitably reduces the amount of mixing which apparently
occurs in a simulation in a smaller domain. Indeed, it is entirely possible that as
Re is increased, the relative intensity of secondary instabilities at such smaller Ri0
may change in as yet not fully understood ways. Since the extent to which such
considerations can influence our low Ri direct numerical simulations has not been
fully explored due to computational limitations, we refrain from presenting quantitative
arguments about mixing properties of such simulations. A detailed discussion of the
potentially misleading nature (at least insofar as geophysically relevant mixing is
concerned) of low Ri numerical simulations designed to produce high Reb during the
flow evolution is presented in Bartello & Tobias (2013).

In summary, while a number of studies have attempted to parameterize mixing
efficiency as a function of Reb or in terms of LO/LT (see Bouffard & Boegman
2013, for a review), we find neither approach to be sufficient. Essentially, Reb
includes information concerning LO and LK , while the ratio LO/LT clearly lacks
explicit information about LK . As demonstrated here, knowledge of all three scales is
needed for characterizing shear-driven stratified turbulent mixing, and so we believe
that the large discrepancies between various attempts at parameterizing mixing
based on either Reb or LO/LT are due to a lack of such additional knowledge.
Despite such discrepancies, we have demonstrated here that the specific role in the
efficiency of mixing of the large overturns themselves is significant, corresponding to
a non-negligible portion of the turbulence life cycle in which LT > LO. The role of
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overturns also appears to be similar for the data from our simulations and for ocean
and lake data. Such efficient mixing is inherently associated with the presence of
large-scale overturns. The clearly more efficient mixing associated with such overturns
is systematically left out of conventional parameterizations (based around the classical
model of Osborn (1980) assuming Γ 6 0.2) that are used to infer mixing rates from
observations.

7. Discussion

We have analysed a sequence of direct numerical simulations of stratified turbulent
mixing events driven by classical shear instability, focusing on a consideration of
the relative time dependence of various natural length scales of turbulence and
the implications of aspects of this relative time dependence for the irreversible
vertical mixing of density. Our analyses demonstrate that for ‘small’ stratification, the
turbulence and ensuing mixing is dominated by large density overturns and pairing
interactions and so any parameterization based on the assumptions of stationary
fully developed isotropic turbulence does not hold, in the specific sense that the
assumptions I–IV mentioned in the introduction do not hold. It is important to note,
however, that there is evidence that the upscale cascade due to pairing instability
may well be suppressed at sufficiently high (perhaps more geophysically relevant)
Reynolds numbers, a regime that we have been unable to access with the currently
employed suite of direct numerical simulation analyses, although there is always the
possibility that other processes may become more important as Re increases markedly.

Conversely, for ‘large’ stratification with minimum Richardson number sufficiently
close to the critical Miles–Howard value of 1/4, mixing is highly time dependent
and a prolonged intermediate period of isotropic stationary turbulence is absent,
corresponding to the break down of assumptions II–III mentioned in the introduction.
In this regime, the scale separation between LO and LK is relatively narrow and
turbulence is greatly influenced by the suppressing influence of stratification. However,
it is unclear whether this behaviour is affected by finite Reynolds number effects, as
the growth rate of the primary instability is so small that diffusion of the background
flow may be affecting adversely the maximum saturated amplitude of the primary
instability, in as yet poorly understood ways.

We argue that the behaviour at slightly smaller intermediate levels of stratification,
where pairing events are suppressed, and yet the primary instability is sufficiently
vigorous to allow for the onset of a large ‘zoo’ of secondary instabilities which trigger
energetic turbulence leads to a ‘generic’ shear-driven stratified mixing behaviour.
Specifically, this generic behaviour exhibits a very efficient turbulence downscale
cascade through the inertial subrange when LT > LO because of the large pool of
potential energy available to sub-LO eddies due to the large initial overturn, whose
vertical scale is characterized by LT . This translates into high mixing efficiency,
which peaks when LT ∼ LO as at that particular time stirring becomes ‘optimal’ since
it is occurring at the largest energy injection scale possible that is not suppressed by
stratification. Although we refer to this behaviour as ‘generic’, it is important to note
that the existence of the early LT > LO regime, particularly associated with relatively
large-scale overturnings, is not guaranteed in the evolution of all shear-unstable
flows and is likely to be environment dependent. For example, KHI billows in an
energetic estuary have been shown not to evolve distinct vorticity cores which store
potential energy with the effective LT being relatively small (Geyer et al. 2010) while
other forms of shear instability (such as the Holmboe instability, see Salehipour
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et al. (2016a) for further details) are not characterized by large overturns, but rather
drive mixing principally through ‘scouring’ (Woods et al. 2010). However, energetic
overturning billows similar in structure to those described here have been observed
growing on low-frequency internal tides in the abyssal ocean (van Haren & Gostiaux
2010, 2012), in deep ocean fracture zones (Van Haren et al. 2014) and in the
thermocline (Thorpe 2005). And as we discussed earlier, several deep ocean field
programs have repeatedly shown that abyssal diapycnal mixing is facilitated through
large overturns which can range in size from a few to hundreds of metres (Ferron
et al. 1998; Frants et al. 2013; Mater et al. 2015; Voet et al. 2015).

We show not only that mixing efficiency depends upon LO/LT , but that it also
depends on the scale separation between LO and LK , i.e. the width of the inertial
subrange of turbulence, or equivalently the magnitude of the buoyancy Reynolds
number Reb. Fundamentally, the key constituents of efficient and vigorous mixing are
that LT &LO and LO/LK is sufficiently large. Therefore, we argue that parameterization
of mixing efficiency based on Reb = (LO/LK)

4/3 alone is insufficient as it misses the
important relative properties of LT and LO, while parameterization based on LT/LO

alone is also insufficient as it misses the Reb contribution. We conjecture that the key
physics of both an optimal injection scale and a wide inertial subrange are required.
Such flows also violate assumption IV presented in the introduction, as there is not
a large-scale separation between the external forcing (characterized by LT) and the
turbulence (characterized at the largest scale by LO).

It is important to note that while some parameterization schemes for inferring
mixing from observations assume isotropy of the turbulence (Osborn & Cox 1972;
Osborn 1980), a large number of observational studies which measure both LT and
LO suggest that LT > LO, implying non-negligible anisotropy (Dillon 1982; Crawford
1986; Ferron et al. 1998; Smyth et al. 2001; Mater et al. 2015). In fact, LO/LT = 0.8
is a standard choice made to obtain the dissipation rate E from LT calculated based
upon fine structure measurements of temperature or salinity and when microstructure
estimates are unavailable (see for example Waterhouse et al. 2014). It is particularly
important to note that while 0.8 might be a reasonable turbulence life cycle mean for
LO/LT , the fact that the ratio is likely much higher during the intermediate period of
flow evolution in which buoyancy flux is maximized (as a result of the coexistence of
distinct overturns upon which turbulence is superimposed) implies an underestimation
of mixing when a constant ratio is used in the fine-scale parameterization based on
the Thorpe scale. Just how large this underestimation is, and how parameterizations
may be modified to capture the mixing associated with large-scale overturnings, are
both topics of ongoing research (see e.g. Mashayek et al. 2017).
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Appendix A. Datasets
The first two oceanic datasets employed for construction of figure 7(b,c) were

introduced in Smyth et al. (2001). Panel (b) corresponds to the FLX91 dataset which
was collected during the FLUX STATS cruise in 1991 approximately 1000 km off the
coast of northern California (Moum 1996). The dataset used in (c) is from the Tropical
Instability Wave Experiment (TIWE) and was collected at the equator at 140 ◦W in
1991 (Lien et al. 1995). The dataset used in the construction of (d) in figure 7 was
introduced in Bouffard & Boegman (2013) and corresponds to observations made at
thermocline depth in Lake Erie during the summers of 2008–2009.

Appendix B. L3D
T versus LT and caveats for oceanographic implications

Our focus in this paper was upon the role of overturns on turbulent mixing in
geophysical shear flows, and more specifically a focus on conditions relevant to
oceans and lakes. The main message of the paper was based on analysis of energy
conversion from the mean kinetic energy (provided by large-scale forcing from a
variety of sources including estuarine exchanges, low-frequency internal wave shear
etc.) to available potential energy and from there to a cascade of overturns that
take energy down to scales at which diapycnal mixing and viscous dissipation occur.
Our main message is that the existence of an intermediate non-trivial overturning
scale between the mean background flow and small-scale turbulence allows for an
efficient energy pathway into diapycnal mixing by providing additional stirring and
filamentation, thereby enhancing the efficiency of mixing. To convey this message
and its sensitivity to variations in Reynolds and Richardson numbers, we employ
a definition of the Thorpe scale, referred to as L3D

T , which is only really practical
in three-dimensional numerical modelling. In this appendix we provide a number
of caveats highlighting the differences between this measure of overturning and the
one-dimensional classical Thorpe scale LT , which for practical limitations is used to
infer mixing rates and is constructed from localized profile measurements in oceanic
and lake environments. We emphasize that the main message of our work does not
depend on the differences we highlight here. Indeed, the importance of taking into
account the existence of such an intermediate overturning scale in parameterization
of mixing in the oceanographic context has already been pointed out by Kunze
(2014). Our research provides a further fluid mechanical basis for such an argument.
Furthermore, we note that while L3D

T cannot be obtained from observations, certain
observational techniques such as those employed by Geyer et al. (2010) provide a
series of parallel profiles measured through turbulent wave trains. Such measurements
can provide a means for constructing a L2D

T to fill in the gap between our study and
the majority of observational studies based on one-dimensional LT .

While physically meaningful and suitable for diagnosis from numerical models,
the root mean square three-dimensional Thorpe scale L3D

T obtained in this work by
full three-dimensional sorting of the density field has important differences from the
one-dimensional LT . Importantly, while the L3D

T can be non-zero in the presence of
a propagating wave without any overturns, or even in the presence of an overturn
riding on a background low-frequency internal wave, just to take two examples, the
one-dimensional LT is only non-zero in the presence of true overturns. In our study,
however, we have only considered flows strongly susceptible to the Kelvin–Helmholtz
instability, which overturns upon initiation of (exponential) growth. Thus, this caveat
(that L3D

T may return a ‘false positive’ of overturning) does not concern our specific
application and so we are safe in using L3D

T as a surrogate for an overturning scale.
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A close comparison of the three-dimensional and one-dimensional Thorpe scales
was provided by SM00. They found that the three-dimensional scale exceeds the
one-dimensional scale in the decay period of turbulence (induced by shear instability)
when the Thorpe scale is small. The generality of this argument in a more complex
environment in which vertical displacements are not entirely or even partially driven
by overturning instabilities is unclear, especially noting that (as mentioned above)
there are scenarios in which the three-dimensional displacement scale might be
non-zero while the one-dimensional scale remains zero due to lack of overturning.
Nevertheless, this difference is not of central importance in the class of flows which
we are considering, since in the case of shear instability both scales are measures of
the physical overturning scale, are not too different during the most energetic period
of turbulence over which most of the contribution to the net buoyancy flux is made,
and can be employed to provide a measure of the width of the spectral gap between
the energy injection scale and the upper bound of the inertial subrange.

However, during the decay period of turbulence, the one-dimensional Thorpe scale
is smaller than the three-dimensional Thorpe scale. Therefore, it is to be expected that
LO/LT grows larger with time than LO/L3D

T . This has implications for our discussion of
figure 6: while LO/LT is likely a monotonically increasing function of time and hence
might be more naturally treated as a proxy for turbulence age, LO/L3D

T is not as clear
a proxy. From a physical point of view, the difference between LO/L3D

T and LO/LT in
the decay period of turbulence in a flow susceptible to Kelvin–Helmholtz instability
is testament to the shortcomings of LT in capturing the totality of the significant
flow physics. A close look at figure 6(a) (which represents cases that, unlike those
in (b), allow for interactions between adjacent billows) reveals that the ratio ROT =

LO/L3D
T remains O(1) during the decay period of the turbulence. This suggests that

as turbulence decays and the energy injecting eddies shrink, so does the Ozmidov
scale accordingly. This further suggests that the eddies associated with the dominant
energetic injection, which are decaying in amplitude and magnitude since the turbulent
kinetic energy and the Thorpe scale are both dropping, may also be thought of as the
largest eddies not yet suppressed by turbulence. Conversely, ROT ≡ LO/LT (based on
the one-dimensional Thorpe scale) suggests that LT can become much smaller than
LO in this period, which implies that energy injection eddies are much smaller than
the maximum size which is not suppressed by stratification, which seems somewhat
inconsistent from a physical perspective.

As we discussed above, despite these subtle differences, there are at least two
further leading-order issues with this proxy. First, it is overly sensitive to the initial
conditions of shear instability, in particular whether adjacent billows can interact or
merge. Second, it remains to be shown if the evolution of the ratio in observations
of more complex nature agrees with that based on shear instability analysis such as
ours and that of SM00. While we have provided evidence that scatter plots of LO
versus LT from observations have certain similarities with our data based on direct
numerical simulations, as already noted in § 6, there is no explicit information about
time evolution and turbulence age in such observational data. Adding such ‘time
stamp’ information clearly warrants future study.
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